MATH2040 Linear Algebra II

Tutorial 1

September 15, 2016

1 Examples:

Example 1

Let V be a vector space over a field \mathbb{F} of characteristic not equal to two, and let u and v be distinct vectors in V. Prove that $\{u, v\}$ is linearly independent if and only if $\{u+v, u-v\}$ is linearly independent.

Solution

We first recall that the characteristic of a field \mathbb{F} is the smallest positive integer p such that $\overbrace{1+1+\cdots+1}^{p \text { times }}=0$, where 0 and 1 are the identity elements for addition and multiplication, respectively, in \mathbb{F}. Then, we could start our prove.
" \Rightarrow "Suppose $\{u, v\}$ is linearly independent, then $a u+b v=0$ implies $a=b=0$. Next, we assume that $c(u+v)+d(u-v)=0$, and we want to show that $c=d=0$.

Note, $(c+d) u+(c-d) v=0$ implies $c+d=c-d=0$, in other words, $c+c=d+d=0$. Since \mathbb{F} is of characteristic not equal to two, so we can conclude that $c=d=0$.
$" \Leftarrow "$ Similar to the above arguments, suppose $\{u+v, u-v\}$ is linearly independent, then $a(u+v)+b(u-v)=0$ implies $a=b=0$. Again, we assume that $c u+d v=0$, and we want to show that $c=d=0$.

Since we can deduce that $\frac{c+d}{2}(u+v)+\frac{c-d}{2}(u-v)=c u+d v=0$, so $\frac{c+d}{2}=\frac{c-d}{2}=0$. And due to \mathbb{F} is of characteristic not equal to two, therefore, we can conclude that $c=d=0$.

Example 2

Let $\alpha=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}, \beta=\left\{1, x, x^{2}\right\}$.
(a) Define $\mathrm{T}: \mathrm{M}_{2 \times 2}(\mathbb{R}) \rightarrow \mathrm{M}_{2 \times 2}(\mathbb{R})$ by $\mathrm{T}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}-c & -d \\ a & b\end{array}\right)$. Compute $[\mathrm{T}]_{\alpha}$.
(b) Define $\mathrm{T}: \mathrm{P}_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ by $\mathrm{T}(f(x))=\left(\begin{array}{cc}f^{\prime}(0) & 2 f(1) \\ 0 & f^{\prime \prime}(3)\end{array}\right)$, where ' denotes differentiation.

Compute $[\mathrm{T}]_{\beta}^{\alpha}$.
(c) Define $\mathrm{T}: \mathrm{M}_{2 \times 2}(\mathbb{R}) \rightarrow \mathrm{P}_{2}(\mathbb{R})$ by $\mathrm{T}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a x^{2}+(b+c+d) x+2 d$. Compute $[\mathrm{T}]_{\alpha}^{\beta}$.

Solution

(a) $[\mathrm{T}]_{\alpha}=\left(\begin{array}{cccc}0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$
(b) $[\mathrm{T}]_{\beta}^{\alpha}=\left(\begin{array}{lll}0 & 1 & 0 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right)$
(c) $[\mathrm{T}]_{\beta}^{\alpha}=\left(\begin{array}{llll}0 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0\end{array}\right)$

2 Exercises:

Question 1 (Section 1.5 Q13):
Let V be a vector space over a field of characteristic not equal to two, and let u, v, and w be distinct vectors in V. Prove that $\{u, v, w\}$ is linearly independent if and only if $\{u+v, u+w, v+w\}$ is linearly independent.
Question 2 (Section 2.2 Q3):
Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by $T\left(a_{1}, a_{2}\right)=\left(a_{1}-a_{2}, a_{1}, 2 a_{1}+a_{2}\right)$. Let β be the standard ordered basis for \mathbb{R}^{2} and $\gamma=\{(1,1,0),(0,1,1),(2,2,3)\}$. Compute $[T]_{\beta}^{\gamma}$. If $\alpha=\{(1,2),(2,3)\}$, compute $[T]_{\alpha}^{\gamma}$.
Question 3 (Section 4.2 Q7):
Let $A=\left(\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ 2 & 3 & 0\end{array}\right)$. Evaluate the determinant of A by cofactor expansion along the second row.

Solution

(Please refer to the practice problem set 1.)

