MATH2040 Linear Algebra II

Tutorial 1

September 15, 2016

1 Examples:

Example 1

Let V be a vector space over a field \mathbb{F} of characteristic not equal to two, and let u and v be distinct vectors in V. Prove that $\{u, v\}$ is linearly independent if and only if $\{u + v, u - v\}$ is linearly independent.

Solution

We first recall that the characteristic of a field \mathbb{F} is the smallest positive integer p such that $1 + 1 + \cdots + 1 = 0$, where 0 and 1 are the identity elements for addition and multiplication, respectively, in \mathbb{F} . Then, we could start our prove.

p times

" \Rightarrow " Suppose $\{u, v\}$ is linearly independent, then au + bv = 0 implies a = b = 0. Next, we assume that c(u+v) + d(u-v) = 0, and we want to show that c = d = 0.

Note, (c+d)u + (c-d)v = 0 implies c+d = c-d = 0, in other words, c+c = d+d = 0. Since \mathbb{F} is of characteristic not equal to two, so we can conclude that c = d = 0.

" \Leftarrow " Similar to the above arguments, suppose $\{u + v, u - v\}$ is linearly independent, then a(u + v) + b(u - v) = 0 implies a = b = 0. Again, we assume that cu + dv = 0, and we want to show that c = d = 0.

Since we can deduce that $\frac{c+d}{2}(u+v) + \frac{c-d}{2}(u-v) = cu + dv = 0$, so $\frac{c+d}{2} = \frac{c-d}{2} = 0$. And due to \mathbb{F} is of characteristic not equal to two, therefore, we can conclude that c = d = 0.

Example 2

Let
$$\alpha = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}, \beta = \{1, x, x^2\}.$$

(a) Define T : $M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ by T $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -c & -d \\ 0 & 1 \end{pmatrix}$. Compute

(a) Define $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -c & -a \\ a & b \end{pmatrix}$. Compute $[T]_{\alpha}$.

(b) Define $T : P_2(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$ by $T(f(x)) = \begin{pmatrix} f'(0) & 2f(1) \\ 0 & f''(3) \end{pmatrix}$, where ' denotes differentiation. Compute $[T]^{\alpha}_{\beta}$.

(c) Define
$$T: M_{2\times 2}(\mathbb{R}) \to P_2(\mathbb{R})$$
 by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ax^2 + (b+c+d)x + 2d$. Compute $[T]^{\beta}_{\alpha}$.

Solution

(a)
$$[T]_{\alpha} = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

(b) $[T]_{\beta}^{\alpha} = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$
(c) $[T]_{\beta}^{\alpha} = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$

2 Exercises:

Question 1 (Section 1.5 Q13):

Let V be a vector space over a field of characteristic not equal to two, and let u, v, and w be distinct vectors in V. Prove that $\{u, v, w\}$ is linearly independent if and only if $\{u+v, u+w, v+w\}$ is linearly independent.

Question 2 (Section 2.2 Q3):

Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(a_1, a_2) = (a_1 - a_2, a_1, 2a_1 + a_2)$. Let β be the standard ordered basis for \mathbb{R}^2 and $\gamma = \{(1, 1, 0), (0, 1, 1), (2, 2, 3)\}$. Compute $[T]^{\gamma}_{\beta}$. If $\alpha = \{(1, 2), (2, 3)\}$, compute $[T]^{\gamma}_{\alpha}$.

Question 3 (Section 4.2 Q7):

Let $A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ 2 & 3 & 0 \end{pmatrix}$. Evaluate the determinant of A by cofactor expansion along the

second row.

Solution

(Please refer to the practice problem set 1.)